Tag Archives: transporters

Membrane Protein Training Event: 3 – 5 April 2019

 

2nd UK Workshop on Membrane Proteins: Solubilisation and Biophysical Characterisation

University of Leeds | 3 – 5 April 2019

CBMNet are sponsoring this Biochemical Society Training Event, a follow up to the successful workshop “Experimental Techniques for Studying Proteins and Lipids in Biological Membranes” held at Aston University in July – August 2018 (read the event report here). Read more

The artificial cell: biology-inspired compartmentalization of chemical function

Royal Society Publishing has recently published a special issue of Interface Focus entitled “The artificial cell: biology-inspired compartmentalization of chemical function”, organised by Paul A Beales, Barbara Ciani and Stephen Mann.

This issue is based on a Royal Society Theo Murphy meeting held on the 26–27 February 2018. The articles reveal the rich diversity of research currently being undertaken in the field of artificial cell design and construction, and highlight the challenges that lie ahead.

The articles are FREE TO ACCESS here.

Read more

CBMNet scientists identify key step in production of Body Odour

CBMNet-funded scientists from the Universities of York and Oxford, along with industrial partner Unilever, have unravelled a key part of the molecular process by which armpit bacteria produce the most pungent component of the noxious smell we recognise as BO. The findings could result in more effective deodorants with targeted active ingredients, the researchers suggest. Read more

Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins

Protein translocation is an essential feature of cellular organisms. Bacteria, like all single-cell organisms, interact with their environment by translocation of proteins across their cell membranes via dedicated secretion pathways. Proteins destined for secretion are directed toward the secretion pathways by the presence of specific signal peptides. This study demonstrates that under conditions of both osmotic stress and translation stress, E. coli cells undergo an excretion phenomenon whereby signal peptide-less proteins are translocated across both the inner and outer cell membranes into the extracellular environment. Confirming the presence of alternative translocation/excretion pathways and understanding their function and regulation are thus important for fundamental microbiology and biotechnology. Read more

Pseudomonas stutzeri as an alternative host for membrane proteins

Manuel Sommer, Hao Xie and Hartmut Michel

Background

Studies on membrane proteins are often hampered by insufficient yields of the protein of interest. Several prokaryotic hosts have been tested for their applicability as production platform but still Escherichia coli by far is the one most commonly used. Nevertheless, it has been demonstrated that, in some cases, hosts other than E. coli are more appropriate for certain target proteins. Read more

Naturally occurring transporter protein discovered which boosts rice yield by 50%

In collaboration with researchers at Nanjing Agricultural University, Dr Tony Miller from the John Innes Centre has developed rice crops with an improved ability to manage their own pH levels, enabling them to take up significantly more nitrogen, iron and phosphorous from soil and increase yield by up to 54%.

Rice is a major crop, feeding almost 50% of the world’s population and has retained the ability to survive in changing environmental conditions. The crop is able to thrive in flooded paddy fields – where the soggy, anaerobic conditions favour the availability of ammonium – as well as in much drier, drained soil, where increased oxygen means more nitrate is available. nitrogen fertilizer is a major cost in growing many cereal crops and its overuse has a negative environmental impact.

The nitrogen that all plants need to grow is typically available in the form of nitrate or ammonium ions in the soil, which are taken up by the plant roots. For the plant, getting the right balance of nitrate and ammonium is very important: too much ammonium and plant cells become alkaline; too much nitrate and they become acidic. Either way, upsetting the pH balance means the plant’s enzymes do not work as well, affecting plant health and crop yield.

Together with the partners in Nanjing, China, Dr Miller’s team has been working out how rice plants can maintain pH under these changing environments.

Rice contains a gene called OsNRT2.3, which creates a protein involved in nitrate transport. This one gene makes two slightly different versions of the protein: OsNRT2.3a and OsNRT2.3b. Following tests to determine the role of both versions of the protein, Dr Miller’s team found that OsNRT2.3b is able to switch nitrate transport on or off, depending on the internal pH of the plant cell.

When this ‘b’ protein was overexpressed in rice plants they were better able to buffer themselves against pH changes in their environment. This enabled them to take up much more nitrogen, as well as more iron and phosphorus. These rice plants gave a much higher yield of rice grain (up to 54% more yield), and their nitrogen use efficiency increased by up to 40%.

Dr Miller said: “Now that we know this particular protein found in rice plants can greatly increase nitrogen efficiency and yields, we can begin to produce new varieties of rice and other crops. These findings bring us a significant step closer to being able to produce more of the world’s food with a lower environmental impact.”

This new technology has been patented by PBL, the John Innes Centre’s innovation management company, and has already been licensed to three different companies to develop new varieties of six different crop species.

This study, which will be published in the Proceedings of the National Academy of Sciences USA, was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and grants from the Chinese Government.

 

The paper “Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields” has been published in the Proceedings of the National Academy of Science www.pnas.org/content/early/2016/06/01/1525184113.full

Full article from BBSRC http://www.bbsrc.ac.uk/news/food-security/2016/160628-pr-protein-discovered-boosts-rice-yield/