Tag Archives: transporters

Detection and Characterization of a Mycobacterial L-Arabinofuranose ABC Transporter Identified with a Rapid Lipoproteomics Protocol

Miaomiao Li, Christoph Müller, Klemens Fröhlich, Oliver Gorka, Lin Zhang, Olaf Groß, Oliver Schilling, Oliver Einsle, Claudia Jessen-Trefzer

Nutrient uptake is essential for survival of organisms, and carbohydrates serve as a crucial carbon and energy source for most microorganisms. Given the importance of mycobacteria as human pathogens a detailed knowledge of carbohydrate uptake transporters is highly desirable, but currently available information is severely limited and mainly based on in silico analyses. Read more

A TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane

Nuria Gómez-Santos, Timo Glatter, Ralf Koebnik, Magdalena Anna Świątek-Połatyńska & Lotte Søgaard-Andersen

TonB-dependent transporters (TBDTs) are ubiquitous outer membrane β-barrel proteins that import nutrients and bacteriocins across the outer membrane in a proton motive force-dependent manner, by directly connecting to the ExbB/ExbD/TonB system in the inner membrane. Read more

Membrane Protein Training Event: 3 – 5 April 2019

 

2nd UK Workshop on Membrane Proteins: Solubilisation and Biophysical Characterisation

University of Leeds | 3 – 5 April 2019

CBMNet are sponsoring this Biochemical Society Training Event, a follow up to the successful workshop “Experimental Techniques for Studying Proteins and Lipids in Biological Membranes” held at Aston University in July – August 2018 (read the event report here). Read more

The artificial cell: biology-inspired compartmentalization of chemical function

Royal Society Publishing has recently published a special issue of Interface Focus entitled “The artificial cell: biology-inspired compartmentalization of chemical function”, organised by Paul A Beales, Barbara Ciani and Stephen Mann.

This issue is based on a Royal Society Theo Murphy meeting held on the 26–27 February 2018. The articles reveal the rich diversity of research currently being undertaken in the field of artificial cell design and construction, and highlight the challenges that lie ahead.

The articles are FREE TO ACCESS here.

Read more

CBMNet scientists identify key step in production of Body Odour

CBMNet-funded scientists from the Universities of York and Oxford, along with industrial partner Unilever, have unravelled a key part of the molecular process by which armpit bacteria produce the most pungent component of the noxious smell we recognise as BO. The findings could result in more effective deodorants with targeted active ingredients, the researchers suggest. Read more

Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins

Protein translocation is an essential feature of cellular organisms. Bacteria, like all single-cell organisms, interact with their environment by translocation of proteins across their cell membranes via dedicated secretion pathways. Proteins destined for secretion are directed toward the secretion pathways by the presence of specific signal peptides. This study demonstrates that under conditions of both osmotic stress and translation stress, E. coli cells undergo an excretion phenomenon whereby signal peptide-less proteins are translocated across both the inner and outer cell membranes into the extracellular environment. Confirming the presence of alternative translocation/excretion pathways and understanding their function and regulation are thus important for fundamental microbiology and biotechnology. Read more

Pseudomonas stutzeri as an alternative host for membrane proteins

Manuel Sommer, Hao Xie and Hartmut Michel

Background

Studies on membrane proteins are often hampered by insufficient yields of the protein of interest. Several prokaryotic hosts have been tested for their applicability as production platform but still Escherichia coli by far is the one most commonly used. Nevertheless, it has been demonstrated that, in some cases, hosts other than E. coli are more appropriate for certain target proteins. Read more

« Older Entries