Tag Archives: SynBio

Construction of Bacterial Cells with an Active Transport System for Unnatural Amino Acids

Wooseok Ko, Rahul Kumar, Sanggil Kim, and Hyun Soo Lee

Engineered organisms with an expanded genetic code have attracted much attention in chemical and synthetic biology research. In this work, engineered bacterial organisms with enhanced unnatural amino acid (UAA) uptake abilities were developed by screening periplasmic binding protein (PBP) mutants for recognition of UAAs. Read more

Enhanced functionalisation of major facilitator superfamily transporters via fusion of C-terminal protein domains is both extensive and varied in bacteria

Benjamin J. Willson, Lindsey Dalzell, Liam N. M. Chapman, Gavin H. Thomas

The evolution of gene fusions that result in covalently linked protein domains is widespread in bacteria, where spatially coupling domain functionalities can have functional advantages in vivo.Fusions to integral membrane proteins are less widely studied but could provide routes to enhance membrane function in synthetic biology. Read more

Engineering yeast endosymbionts as a step toward the evolution of mitochondria

Angad P. MehtaLubica SupekovaJian-Hua ChenKersi PestonjamaspPaul WebsterYeonjin KoScott C. HendersonGerry McDermottFrantisek Supek, and Peter G. Schultz

Endosymbiotic theory suggests that mitochondria evolved from free-living prokaryotes which entered the host cell and were retained as endosymbionts. Here, we model this earliest stage of the endosymbiotic theory of mitochondrial evolution by engineering endosymbiosis between two genetically tractable model organisms, Escherichia coli and Saccharomyces cerevisiae. Read more

Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker’s yeast

Ali R. Awan, Benjamin A. Blount, David J. Bell, William M. Shaw, Jack C.H. Ho, Robert M. McKiernan & Tom Ellis

Fungi are a valuable source of enzymatic diversity and therapeutic natural products including antibiotics. Here we engineer the baker’s yeast Saccharomyces cerevisiae to produce and secrete the antibiotic penicillin, a beta-lactam nonribosomal peptide, by taking genes from a filamentous fungus and directing their efficient expression and subcellular localization. Using synthetic biology tools combined with long-read DNA sequencing, we optimize productivity by 50-fold to produce bioactive yields that allow spent S. cerevisiae growth media to have antibacterial action against Streptococcus bacteria. This work demonstrates that S. cerevisiae can be engineered to perform the complex biosynthesis of multicellular fungi, opening up the possibility of using yeast to accelerate rational engineering of nonribosomal peptide antibiotics.


Read the full article in Nature Communications

Whole-cell biocatalysts by design

Baixue Lin and Yong Tao

Whole-cell biocatalysts provide unique advantages and have been widely used for the efficient biosynthesis of value-added fine and bulk chemicals, as well as pharmaceutically active ingredients. What is more, advances in synthetic biology and metabolic engineering, together with the rapid development of molecular genetic tools, have brought about a renaissance of whole-cell biocatalysis. These rapid advancements mean that whole-cell biocatalysts can increasingly be rationally designed. Genes of heterologous enzymes or synthetic pathways are increasingly being introduced into microbial hosts, and depending on the complexity of the synthetic pathway or the target products, they can enable the production of value-added chemicals from cheap feedstock. Metabolic engineering and synthetic biology efforts aimed at optimizing the existing microbial cell factories concentrate on improving heterologous pathway flux, precursor supply, and cofactor balance, as well as other aspects of cellular metabolism, to enhance the efficiency of biocatalysts. In the present review, we take a critical look at recent developments in whole-cell biocatalysis, with an emphasis on strategies applied to designing and optimizing the organisms that are increasingly modified for efficient production of chemicals.


Read the full article in Microbial Cell Factories

« Older Entries