Tag Archives: Corynebacterium

Effect of Polyhydroxybutyrate (PHB) storage on l-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation

Effect of Polyhydroxybutyrate (PHB) storage on l-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation

Background
Corynebacterium crenatum SYPA 5 is the industrial strain for l-arginine production. Poly-β-hydroxybutyrate (PHB) is a kind of biopolymer stored as bacterial reserve materials for carbon and energy. The introduction of the PHB synthesis pathway into several strains can regulate the global metabolic pathway. In addition, both the pathways of PHB and l-arginine biosynthesis in the cells are NADPH-dependent. NAD kinase could upregulate the NADPH concentration in the bacteria. Thus, it is interesting to investigate how both PHB and NAD kinase affect the l-arginine biosynthesis in C. crenatum SYPA 5.

Results
C. crenatum P1 containing PHB synthesis pathway was constructed and cultivated in batch fermentation for 96 h. The enzyme activities of the key enzymes were enhanced comparing to the control strain C. crenatum SYPA 5. More PHB was found in C. crenatum P1, up to 12.7 % of the dry cell weight. Higher growth level and enhanced glucose consumptions were also observed in C. crenatum P1. With respect to the yield of l-arginine, it was 38.54 ± 0.81 g/L, increasing by 20.6 %, comparing to the control under the influence of PHB accumulation. For more NADPH supply, C. crenatum P2 was constructed with overexpression of NAD kinase based on C. crenatum P1. The NADPH concentration was increased in C. crenatum P2 comparing to the control. PHB content reached 15.7 % and 41.11 ± 1.21 g/L l-arginine was obtained in C. crenatum P2, increased by 28.6 %. The transcription levels of key l-arginine synthesis genes, argB, argC, argD and argJ in recombinant C. crenatum increased 1.9–3.0 times compared with the parent strain.

Conclusions
Accumulation of PHB by introducing PHB synthesis pathway, together with up-regulation of coenzyme level by overexpressing NAD kinase, enables the recombinant C. crenatum to serve as high-efficiency cell factories in the long-time l-arginine fermentation. Furthermore, batch cultivation of the engineered C. crenatum revealed that it could accumulate both extracellular l-arginine and intracellular PHB simultaneously. All of these have a potential biotechnological application as a strategy for high-yield l-arginine.

Read the full article here.

Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose

Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose

An efficient microbial cell factory requires a microorganism that can utilize a broad range of substrates to economically produce value-added chemicals and fuels. The industrially important bacterium Corynebacterium glutamicum has been studied to broaden substrate utilizations for lignocellulose-derived sugars. However, C. glutamicum ATCC 13032 is incapable of PTS-dependent utilization of cellobiose because it has missing genes annotated to β-glucosidases (bG) and cellobiose-specific PTS permease.

Read the full article here.

Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose

Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose

Background
Corynebacterium glutamicum is generally regarded as a safe microorganism and is used to produce many biochemicals, including L-glutamate. 5-Aminolevulinic acid (ALA) is an L-glutamate derived non-protein amino acid, and is widely applied in fields such as medicine and agriculture.

Results
The products of the gltX, hemA, and hemL genes participate in the synthesis of ALA from L-glutamate. Their annotated C. glutamicum homologs were shown to be functional using heterologous complementation and overexpression techniques. Coexpression of hemA and hemL in native host led to the accumulation of ALA, suggesting the potential of C. glutamicum to produce ALA for research and commercial purposes. To improve ALA production, we constructed recombinant C. glutamicum strains expressing hemA and hemL derived from different organisms. Transcriptome analysis indicated that the dissolved oxygen level and Fe 2+ concentration had major effects on ALA synthesis. The downstream pathway of heme biosynthesis was inhibited using small molecules or introducing genetic modifications. Small-scale flask cultures of engineered C. glutamicum produced 1.79 g/L of ALA.

Conclusion
Functional characterization of the key enzymes indicated complex regulation of the heme biosynthetic pathway in C. glutamicum. Systematic analysis and molecular genetic engineering of may facilitate its development as a system for large-scale synthesis of ALA.

Read the full article here.

Regulons of global transcription factors in Corynebacterium glutamicum

Regulons of global transcription factors in Corynebacterium glutamicum

Corynebacterium glutamicum, a high GC content gram-positive soil bacterium in Actinobacteria, has been used for the industrial production of amino acids and engineered to produce various compounds, including polymer building blocks and biofuels. Since its genome sequence was first published, its versatile metabolic pathways and their genetic components and regulatory mechanisms have been extensively studied. Previous studies on transcriptional factors, including two-component systems and σ factors, in the bacterium have revealed transcriptional regulatory links among the metabolic pathways and those among the stress response systems, forming a complex transcriptional regulatory network. The regulatory links are based on knowledge of the transcription factors, such as their target genes (regulons), DNA sequence motifs for recognition, and effector molecules controlling their activities, all of which are fundamental for understanding their physiological functions. Recent advances in chromatin immunoprecipitation (ChIP)-based genome-wide analyses provide an opportunity to comprehensively identify the transcription factor regulon, composed of its direct target genes, and its precise consensus binding motif. A common feature among the regulon constituents may provide clues to identify an effector molecule targeting the factor. In this mini-review, we summarize the current knowledge of the regulons of the C. glutamicum transcription factors that have been analyzed via ChIP-based technologies. The regulons consisting of direct target genes revealed new physiological roles of the transcription factors and new regulatory interactions, contributing to refinement and expansion of the transcriptional regulatory network and the development of guidelines and genetic tools for metabolic engineering of C. glutamicum.

Read the full article here.