Tag Archives: biocatalysis

Whole-cell biocatalysts by design

Baixue Lin and Yong Tao

Whole-cell biocatalysts provide unique advantages and have been widely used for the efficient biosynthesis of value-added fine and bulk chemicals, as well as pharmaceutically active ingredients. What is more, advances in synthetic biology and metabolic engineering, together with the rapid development of molecular genetic tools, have brought about a renaissance of whole-cell biocatalysis. These rapid advancements mean that whole-cell biocatalysts can increasingly be rationally designed. Genes of heterologous enzymes or synthetic pathways are increasingly being introduced into microbial hosts, and depending on the complexity of the synthetic pathway or the target products, they can enable the production of value-added chemicals from cheap feedstock. Metabolic engineering and synthetic biology efforts aimed at optimizing the existing microbial cell factories concentrate on improving heterologous pathway flux, precursor supply, and cofactor balance, as well as other aspects of cellular metabolism, to enhance the efficiency of biocatalysts. In the present review, we take a critical look at recent developments in whole-cell biocatalysis, with an emphasis on strategies applied to designing and optimizing the organisms that are increasingly modified for efficient production of chemicals.


Read the full article in Microbial Cell Factories

Metabolic engineering of Escherichia coli for the production of cinnamaldehyde

Metabolic engineering of Escherichia coli for the production of cinnamaldehyde

Background
Plant parasitic nematodes are harmful to agricultural crops and plants, and may cause severe yield losses. Cinnamaldehyde, a volatile, yellow liquid commonly used as a flavoring or food additive, is increasingly becoming a popular natural nematicide because of its high nematicidal activity and, there is a high demand for the development of a biological platform to produce cinnamaldehyde.

Results
We engineered Escherichia coli as an eco-friendly biological platform for the production of cinnamaldehyde. In E. coli, cinnamaldehyde can be synthesized from intracellular l-phenylalanine, which requires the activities of three enzymes: phenylalanine-ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), and cinnamoyl-CoA reductase (CCR). For the efficient production of cinnamaldehyde in E. coli, we first examined the activities of enzymes from different sources and a gene expression system for the selected enzymes was constructed. Next, the metabolic pathway for l-phenylalanine biosynthesis was engineered to increase the intracellular pool of l-phenylalanine, which is a main precursor of cinnamaldehyde. Finally, we tried to produce cinnamaldehyde with the engineered E. coli. According to this result, cinnamaldehyde production as high as 75 mg/L could be achieved, which was about 35-fold higher compared with that in the parental E. coli W3110 harboring a plasmid for cinnamaldehyde biosynthesis. We also confirmed that cinnamaldehyde produced by our engineered E. coli had a nematicidal activity similar to the activity of commercial cinnamaldehyde by nematicidal assays against Bursaphelenchus xylophilus.

Conclusion
As a potential natural pesticide, cinnamaldehyde was successfully produced in E. coli by construction of the biosynthesis pathway and, its production titer was also significantly increased by engineering the metabolic pathway of l-phenylalanine.

Read the full article here.

Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain

Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain

Background
Imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae.

Results
We found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effects of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2∆ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance.

Conclusions
This work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors.

Read the full article here.