CBMNET secures major new industrial biotechnology funding

CBMNet secures major new industrial biotechnology funding
CBMNet_Web_10 CBMNet_Web_4 CBMNet_Web_8 CBMNet_Web_2 CBMNet_Web_6 CBMNet_Web_5 CBMNet_Web_9

The chemicals industry is a vital component of the world economy that is faced by the need to provide innovative and sustainable solutions to provide the resources required for a growing global population. One approach to a more sustainable chemicals industry is the use of microbial cell factories to produce key chemicals from sustainable feedstocks. However, a major barrier to commercial cell-factory-based chemical production is poor product yield. Often this is caused by intoxication of the cells resulting in sub-optimal performance. To address this problem, a £3 million research project (DeTox) to improve the sustainable production of chemicals and biofuels by microbes has been awarded by the Industrial Biotechnology Catalyst fund to a consortium of scientists led by the Sheffield-based Biotechnology and Biological Sciences Research Council (BBSRC) Crossing Biological Membranes Network in Industrial Biotechnology (CBMNet). Professors Jeffrey Green and David Kelly along with Dr Susan Molyneux-Hodgson at the University of Sheffield are working with colleagues at the Universities of York, Nottingham and Cambridge and five companies (Green Biologics, ReBio, Lucite, CPI and Ingenza), to overcome poor product yields by focussing on how the properties of the bacterial cell membrane can be modified to create more robust cell factories.

DeTox is led by the CBMNet co-director Dr Gavin Thomas (University of York) and has benefited from funding from a CBMNet Business Interaction Voucher (BIV) which generated some of the preliminary data underpinning the DeTox project.

“The BIV was very successful from our point of view as we trialled a new method in our lab, which we took right through to the point where we generated novel data. This then went straight into a grant application.” – Dr Gavin Thomas

“ The DeTox project is an exciting opportunity to improve the efficiency of cell-based chemical production that emerged from the creative discussions within the CBMNet management board and our industrial partners” – Professor Jeffrey Green (CBMNet director)

Importantly, the project includes a sociological study of collaborative research processes to develop a better understanding of ‘responsible innovation’.

Dr Molyneux-Hodgson, an expert in the social aspects of synthetic biology in the Department of Sociological Studies, said: “The approach of integrating sociological study into a technical scientific project is becoming more common, and it’s an approach that has already been shown to add enormous value to research. We’re very much looking forward to working alongside the scientists and engineers in this important research.”

Dr Preben Krabben, Head of Innovation at Green Biologics commented “Green Biologics are looking forward to working with the academic community over the next five years. It is with great pleasure that the wider UK academic community has recognised Clostridia as an important industrial microbe and hopefully this will lead to a dynamic and vibrant community.”

DeTox is only one of the many achievements of CBMNet. So far it has funded seven Proof-of-Concept grants along with seven Vacation Scholarships (worth over £175,000) and five Business Interaction Vouchers (worth over £50,000). Many of these awards have focused on supporting students and early career researchers to ensure that the biotechnology expertise continues to grow.

“In our first year we have begun to establish an active and engaged community of industrialists and academics. We now need to build on these foundations and promote the importance of an appreciation of the impact that membrane biology can have on industrial biotechnology processes through our project funding streams and meetings.” – Professor Jeffrey Green

CBMNet is always seeking to further strengthen its links with industry so that the expert knowledge of the UK ‘membrane research’ community is translated into improved biotechnological processes. As the network continues to expand, the sum of its collective knowledge will be a significant resource for the UK biotechnology industry to draw upon.

Leave a Reply

Your email address will not be published. Required fields are marked *