Category Archives: SCIENCE

Viscous control of cellular respiration by membrane lipid composition

Lipid composition determines the physical properties of biological membranes and can vary substantially between and within organisms. We describe a specific role for the viscosity of energy-transducing membranes in cellular respiration. Engineering of fatty acid biosynthesis in Escherichia coli allowed us to titrate inner membrane viscosity across a 10-fold range by controlling the abundance of unsaturated or branched lipids. These fluidizing lipids tightly controlled respiratory metabolism, an effect that can be explained with a quantitative model of the Electron Transport Chain (ETC) that features diffusion-coupled reactions between enzymes and electron carriers (quinones). Lipid unsaturation also modulated mitochondrial respiration in engineered budding yeast strains. Thus, diffusion in the ETC may serve as an evolutionary constraint for lipid composition in respiratory membranes.

Read the full article in Science.

An engineered thermal-shift screen reveals specific lipid preferences of eukaryotic and prokaryotic membrane proteins

Membrane bilayers are made up of a myriad of different lipids that regulate the functional activity, stability, and oligomerization of many membrane proteins. Despite their importance, screening the structural and functional impact of lipid–protein interactions to identify specific lipid requirements remains a major challenge. Here, we use the FSEC-TS assay to show cardiolipin-dependent stabilization of the dimeric sodium/proton antiporter NhaA, demonstrating its ability to detect specific protein-lipid interactions. Based on the principle of FSEC-TS, we then engineer a simple thermal-shift assay (GFP-TS), which facilitates the high-throughput screening of lipid- and ligand- interactions with membrane proteins. By comparing the thermostability of medically relevant eukaryotic membrane proteins and a selection of bacterial counterparts, we reveal that eukaryotic proteins appear to have evolved to be more dependent to the presence of specific lipids.

Read the full article in Nature Communications.

The artificial cell: biology-inspired compartmentalization of chemical function

Royal Society Publishing has recently published a special issue of Interface Focus entitled “The artificial cell: biology-inspired compartmentalization of chemical function”, organised by Paul A Beales, Barbara Ciani and Stephen Mann.

This issue is based on a Royal Society Theo Murphy meeting held on the 26–27 February 2018. The articles reveal the rich diversity of research currently being undertaken in the field of artificial cell design and construction, and highlight the challenges that lie ahead.

The articles are FREE TO ACCESS here.

Read more

Converting Escherichia coli into an archaebacterium with a hybrid heterochiral membrane

Escherichia coli has been engineered toward an archaebacterium with an unprecedented high level of archaeal ether phospholipids. The obtained cells stably maintain a mixed heterochiral membrane. This finding challenges theories that assume that intrinsic instability of mixed membranes led to the “lipid divide” and the subsequent differentiation of bacteria and archaea. Furthermore, this study paves the way for future membrane engineering of industrial production organisms with improved robustness. Read more

Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins

Protein translocation is an essential feature of cellular organisms. Bacteria, like all single-cell organisms, interact with their environment by translocation of proteins across their cell membranes via dedicated secretion pathways. Proteins destined for secretion are directed toward the secretion pathways by the presence of specific signal peptides. This study demonstrates that under conditions of both osmotic stress and translation stress, E. coli cells undergo an excretion phenomenon whereby signal peptide-less proteins are translocated across both the inner and outer cell membranes into the extracellular environment. Confirming the presence of alternative translocation/excretion pathways and understanding their function and regulation are thus important for fundamental microbiology and biotechnology. Read more

Identification and utilization of two important transporters: SgvT1 and SgvT2, for griseoviridin and viridogrisein biosynthesis in Streptomyces griseoviridis

Yunchang Xie, Junying Ma, Xiangjing Qin, Qinglian Li and Jianhua Ju

Background

Griseoviridin (GV) and viridogrisein (VG, also referred as etamycin), both biosynthesized by a distinct 105 kb biosynthetic gene cluster (BGC) in Streptomyces griseoviridis NRRL 2427, are a pair of synergistic streptogramin antibiotics and very important in treating infections of many multi-drug resistant microorganisms. Three transporter genes, sgvT1–T3 have been discovered within the 105 kb GV/VG BGC, but the function of these efflux transporters have not been identified. Read more

Pseudomonas stutzeri as an alternative host for membrane proteins

Manuel Sommer, Hao Xie and Hartmut Michel

Background

Studies on membrane proteins are often hampered by insufficient yields of the protein of interest. Several prokaryotic hosts have been tested for their applicability as production platform but still Escherichia coli by far is the one most commonly used. Nevertheless, it has been demonstrated that, in some cases, hosts other than E. coli are more appropriate for certain target proteins. Read more

« Older Entries