Category Archives: NEWS

Identification and utilization of two important transporters: SgvT1 and SgvT2, for griseoviridin and viridogrisein biosynthesis in Streptomyces griseoviridis

Identification and utilization of two important transporters: SgvT1 and SgvT2, for griseoviridin and viridogrisein biosynthesis in Streptomyces griseoviridis

Background
Griseoviridin (GV) and viridogrisein (VG, also referred as etamycin), both biosynthesized by a distinct 105 kb biosynthetic gene cluster (BGC) in Streptomyces griseoviridis NRRL 2427, are a pair of synergistic streptogramin antibiotics and very important in treating infections of many multi-drug resistant microorganisms. Three transporter genes, sgvT1–T3 have been discovered within the 105 kb GV/VG BGC, but the function of these efflux transporters have not been identified.

Results
In the present study, we have identified the different roles of these three transporters, SgvT1, SgvT2 and SgvT3. SgvT1 is a major facilitator superfamily (MFS) transporter whereas SgvT2 appears to serve as the sole ATP-binding cassette (ABC) transporter within the GV/VG BGC. Both proteins are necessary for efficient GV/VG biosynthesis although SgvT1 plays an especially critical role by averting undesired intracellular GV/VG accumulation during biosynthesis. SgvT3 is an alternative MFS-based transporter that appears to serve as a compensatory transporter in GV/VG biosynthesis. We also have identified the γ-butyrolactone (GBL) signaling pathway as a central regulator of sgvT1–T3 expression. Above all, overexpression of sgvT1 and sgvT2 enhances transmembrane transport leading to steady production of GV/VG in titers ≈ 3-fold greater than seen for the wild-type producer and without any notable disturbances to GV/VG biosynthetic gene expression or antibiotic control.

Conclusions
Our results shows that SgvT1–T2 are essential and useful in GV/VG biosynthesis and our effort highlight a new and effective strategy by which to better exploit streptogramin-based natural products of which GV and VG are prime examples with clinical potential.

Read the full article here.

IBioIC announces 100th Member

Innovative British biotechnology to add millions to economy

Glasgow,19 October 2017 – The Industrial Biotechnology Innovation Centre today welcomes its 100th member, in what marks a significant step towards the growth of the UK biotechnology market.

It is estimated that by 2025, the UK industrial biotechnology market will be worth up to £12 billion and with the current rate of innovation and growth; it is easy to see how. Industrial biotechnology is changing the world, transitioning products and processes from being petro chemical-based to bio-based.

Everything we use in our daily lives can be reimagined using IB processes so that we are more sustainable, leading to reduced greenhouse gas emissions, energy consumption and waste generation. Examples from IBioIC’s membership include:

•       Prawn shells being used to make environmentally friendly and antimicrobial cling film
•       Timber residues used to make natural food flavourings, including vanilla
•       Methane, a natural gas, converted into high quality protein animal feed
•       Waste bread and potato starch used in medicine manufacturing
•       Bi-products from whiskey manufacturing used to make fuel, feed and even nanoparticles for electronics
•       Genetically modified mosquitoes used to battle Zika virus, Dengue fever and Malaria

Some of the UK’s best-untapped resources for IB are carbon dioxide, agricultural wastes, municipal waste – heading to the landfill, seaweed and timber waste. It is because of these feedstocks and the high-level of academic expertise that the UK, and in particular Scotland, is attracting investment from around the world.

Industrial biotechnology may be a little known industry, but there is clear impact for companies of all sizes. IBioIC’s membership includes 14 startups and spinouts, 42 SMEs and 17 multi-national corporations, as well as government departments and other business consultancies. In keeping with the multi-disciplinary nature of IB, the members include IB expertise from a wide range of industries, from food to pharma to materials. IBioIC supports their members by helping their ideas develop from concept to commercial reality.

100th member – Oxford Biotrans: making natural scents and flavourings from IB

IBioIC recently welcomed Oxford Biotrans as their 100th member to join the likes of GSK, Scottish Water and Ingenza. Oxford Biotrans is a University of Oxford spin-out company supported by over 20 years of research by Dr Luet Lok Wong from the Department of Chemistry. Founded in 2013, the company is working to develop and commercialise enzymatic process technology to yield high-value chemicals from natural sources. Their procedures are environmentally friendly – producing less chemical waste and using less energy than traditional methods.
Their first product, natural-grade nootkatone, is a sesquiterpene, which is the flavour and scent of grapefruit and is used in food, beverage and cosmetic applications (including enhancing in non-citrus flavours). Natural-grade nootkatone is traditionally an expensive ingredient and large quantities of grapefruit are needed to extract commercial amounts of nootkatone – 400,000kg of grapefruit is needed to produce just 1kg of nootkatone. A synthetic nootkatone can be produced through chemical processes, but this requires high temperatures, heavy metals and peroxides, and cannot be classed as natural in the EU.
Oxford Biotrans has developed a process to convert natural valencene; a citrus extract readily obtained from oranges, into natural-grade nootkatone, and is now offering an attractive, secure and environmentally-friendly supply of this in-demand compound. The company has just raised £2.1 million from investment activities, which will enable them to accelerate market entry of further products in the pipeline, building on the performance and capabilities of their innovative platform technology.
Oxford Biotrans has used the support of IBioIC to develop collaborative networks, secure project partners and grant funding and access academic support, hosting an IBioIC PhD student in the organisation. They will also use IBioIC’s scale-up facilities in future to test new ideas and processes for commercialisation.

About IBioIC
IBioIC is a specialist in the Industrial Biotechnology (IB) sector, designed to stimulate the growth of the IB sector in Scotland to £900 million by 2025. The Centre is a connector between industry, academia and government, investing in and facilitating access to expertise, equipment and education in order to grow the industry into a powerhouse of Scotland’s economy.

For more information visit: http://ibioic.com/
Follow us on Twitter at: https://twitter.com/IBioIC

About Oxford Biotrans
Oxford Biotrans is a University of Oxford spin-out company working to develop and commercialise enzymatic process technology to yield high-value chemicals.
For more information visit: http://oxfordbiotrans.com/

CBMNet helps highlight Northern Bioeconomy Powerhouse

CBMNet helps highlight Northern Bioeconomy Powerhouse – North of England generates £91 billion for UK bioeconomy

A government-commissioned report has shown that the north of England generates an annual turnover of £91 billion and employs more than 400,000 people in the regional bioeconomy.

The UK government requested regional science and innovation audits (SIAs) to develop a new approach to regional economic development. The reports aim to help the UK regions analyse their strengths and identify mechanisms to fulfil their potential.

The north of England report, led by the University of York in collaboration with northern universities (Including CBMNet, at The University of Sheffield) and colleges, research institutions, Local Enterprise Partnerships and businesses, showed that the region has the facilities, specialised research and innovation capability and industrial capacity to deliver a world-leading bioeconomy.

The bioeconomy is defined as the production of biomass and the conversion of renewable biological resources into value-added products such as food, bio-based products and bioenergy.

The report reveals that the UK’s bioeconomy, excluding agriculture, is the third-largest in the European Union after Germany and France and supports five million jobs directly and indirectly.

The consortium’s vision is one of an integrated and innovation-driven product, process and service bioeconomy in the north of England, allowing the region to compete in the multi-trillion-pound global market for sustainable food, feed, chemicals, materials, consumer products and energy.


The BBSRC, with support from EPSRC, has committed £18 million to fund thirteen separate collaborative national Networks in Industrial Biotechnology and Bioenergy (NIBB), which together include 1125 academic members and 801 company members ranging from micro-SMEs to multinational conglomerates. These multidisciplinary networks drive and fund joint industry-academia collaborations to harness the potential of biological resources for producing and processing materials, biopharmaceuticals, chemicals and energy.

“We at Lucite have always been aware that a key issue for us, as we strive to develop new technology for the sustainable production of methacrylates, is the transport of substrates and products across the membranes of the microbial hosts. The issue was identifying the key expertise with which we could collaborate to solve our product specific problems. CBMNet [NIBB led from the University of Sheffield] has been instrumental in bringing together the UK and European expertise in membrane science.“ Graham Eastham, Lucite International

NIBB leadership, membership, and competitively distributed funding is disproportionately based in the North of England. Nine of the thirteen Networks are led or co-led from universities in the region; 40% of academic members are based in the region, and 27% of company members are from the North of England. Of competitively distributed funding, 30% has been secured by regional institutions.


Professor Koen Lamberts, Vice-Chancellor at the University of York, said: “The north of England has huge capabilities in areas such as agri-science, agri-technology, and industrial biotechnology, with the potential to address some of the UK’s biggest societal challenges.

“The north of England leads the UK in the volume of funded research aimed at increasing innovation in the bioeconomy, which puts the region in a very strong position to deliver a globally competitive industry.”

The report reveals the north of England has particular strengths in chemicals, process industries, and in food and drink.  Food and drink represents around one-third of the regional bioeconomy and chemicals make up one-quarter.

The N8 Research Partnership, a northern university research consortium, has a major interdisciplinary programme in agri-food research across eight universities in the region.

The region holds 38 per cent of the UK’s chemicals industry workforce, 31 per cent of the polymers industry workforce, and 36 per cent of apprenticeships relevant to the bioeconomy. The universities in the north also provide a quarter of the UK science, technology, engineering and mathematics graduates.

Business Minister Lord Prior said: “The Science and Innovation Audits we are publishing today highlight the innovative strengths in regions across the UK and the significant growth and investment opportunities they present.

“Together with our record investment of an additional £4.7 billion for research and development to 2020/21, we are working closely with regional businesses and partners to ensure the ambitions set out in these reports are delivered to maintain our status as a science powerhouse.”

See the full report at https://www.york.ac.uk/research/the-bioeconomy-in-the-north-of-england-sia/

CBMNet Early Career Researcher gives talk at Ignite Academy

 

CBMNet Early Career Researcher gives talk at Ignite Academy

Leonardo Talachia Rosa – Bacterial insight: The faster you chew, the more you eat.

Bacteria are isolated from the environment by a lipid bi layer, and in order to uptake food, they need specific components called membrane transporters. They need a transporter for each compound, just as if we needed a different mouth for every food. Some transporters are more efficient than others, and this talk will be about how I am trying to discover how some very efficient transporters work, and trying to engineer them for a greener future.

https://www.sheffield.ac.uk/ris/ecr/events/igniteacademy2017


On the 21st September, the University of Sheffield presents Magical Worlds: Ignite Academy 2017 6.30pm-9pm, Adelphi Room, Crucible Theatre

+ FREE ENTRY + 18x 5min presentations
What are the modern mysteries, problems and questions that shape the research we do across our university? What are the current small niggles and big challenges that research can help us face?

What is Ignite? Ignite is a geek event that is held in over 100 cities worldwide. At the events, Ignite presenters share their research passions, using 20 slides that auto-advance every 15 seconds, making a total of just five minutes. 
What will you learn? 
We cover a broad range of topics from departments across the University. The spirit of Ignite Academy is simply about education, learning, teaching and sharing ideas with the people of Sheffield.
Who is this event for? Each talk is pitched for a public audience so everyone is welcome. Ignite Academy is a chance to hear about new projects, exciting ideas, leading thinking, and up to the minute innovation.

Pseudomonas stutzeri as an alternative host for membrane proteins

Pseudomonas stutzeri as an alternative host for membrane proteins

Background

Studies on membrane proteins are often hampered by insufficient yields of the protein of interest. Several prokaryotic hosts have been tested for their applicability as production platform but still Escherichia coli by far is the one most commonly used. Nevertheless, it has been demonstrated that in some cases hosts other than E. coli are more appropriate for certain target proteins.

Results

Here we have developed an expression system for the heterologous production of membrane proteins using a single plasmid-based approach. The gammaproteobacterium Pseudomonas stutzeri was employed as a new production host. We investigated several basic microbiological features crucial for its handling in the laboratory. The organism belonging to bio-safety level one is a close relative of the human pathogen Pseudomonas aeruginosaPseudomonas stutzeri is comparable to E. coli regarding its growth and cultivation conditions. Several effective antibiotics were identified and a protocol for plasmid transformation was established. We present a workflow including cloning of the target proteins, small-scale screening for the best production conditions and finally large-scale production in the milligram range. The GFP folding assay was used for the rapid analysis of protein folding states. In summary, out of 36 heterologous target proteins, 20 were produced at high yields. Additionally, eight transporters derived from P. aeruginosa could be obtained with high yields. Upscaling of protein production and purification of a Gluconate:H+ Symporter (GntP) family transporter (STM2913) from Salmonella enterica to high purity was demonstrated.

Conclusions

Pseudomonas stutzeri is an alternative production host for membrane proteins with success rates comparable to E. coli. However, some proteins were produced with high yields in P. stutzeri but not in E. coliand vice versa. Therefore, P. stutzeri extends the spectrum of useful production hosts for membrane proteins and increases the success rate for highly produced proteins. Using the new pL2020 vector no additional cloning is required to test both hosts in parallel.

Read the full here. 

Government Publishes paper on ‘Collaboration on science and innovation: A FUTURE PARTNERSHIP PAPER’

Government Publishes paper on ‘Collaboration on science and innovation: A FUTURE PARTNERSHIP PAPER’

The United Kingdom wants to build a new, deep and special partnership with the European Union. This paper is part of a series setting out key issues which form part of the Government’s vision for that partnership, and which will explore how the UK and the EU, working together, can make this a reality.

Each paper will reflect the engagement the Government has sought from external parties with expertise in these policy areas, and will draw on the very extensive work undertaken across Government since last year’s referendum. Taken together, these papers are an essential step towards building a new partnership to promote our shared interests and values.

Read the paper here.

CBMNet awarded – Industrial Biotechnology Catalyst Seeding Funding


CBMNet awarded Industrial Strategy Challenge Funding

We are pleased to announce that CBMNet has been awarded £150,000 from the Industrial Strategy Challenge Fund in the form of an Industrial Biotechnology Catalyst Seeding Award.


 

£100,000 of this has just been awarded to Dr Alan Goddard, Aston University, in the form of a CBMNet FLAGSHIP award – Consolidation, Integration and Critical Mass Building- Optimizing membrane function in the Clostridial ABE process. This project involves collaboration between Dr Goddard, Dr Robert Fagan (University of Sheffield), Professor Gavin Thomas (University of York), Dr Peter Chivers (Durham University) and Green Biologics Limited.

The overall objective is to consolidate GBL-CBMNet interactions facilitated through five CBMNet Business Interaction Vouchers, one academic-industrial exchange and one Proof-of-Concept award, along with a Metals In Biology Business Interaction Voucher, to obtain a more holistic picture of the role of membrane dysfunction in restricting n-butanol yields.  The project will synergise the independent research of four PIs, who have not previously worked together, and GBL to build critical mass and generate new data to underpin substantial funding applications in the near future e.g. BBSRC-LINK, IPA, and Catalyst-type projects.  GBL achieved a significant milestone in 2016 by commissioning the first new ABE plant in the US since 1938.  This success has been achieved despite limited understanding of the physiology of Clostridia used in the process, especially the cell membrane that is critical for the stability and robustness of the strain in industrial fermentations, in particular nutrient uptake and metabolite efflux. This project will contribute to fundamental understanding of the membrane and identify gene targets for performance improvements.

Over the past few years, GBL have collaborated with each of the academic partners to developing a better understanding of the solventogenic Clostridia in a number of important areas.  GBL have recently opened their first large scale n-butanol plant, Central Minnesota Renewables in the US and have patented a highly efficient proprietary genome editing technology. By combining the academic expertise with GBLs technology, this project will provide novel routes for strain development that can impact on a number of process parameters. For example, higher butanol concentrations in the fermentation may reduce the likelihood of contamination, lead to a more efficient cell separation process, and reduce the significant costs associated with distillation, as well as improve the water balance of the plant (which has an environmental impact).  By understanding the butanol stress response at a number of levels (membrane lipids, proteins, transporters, metalloenzymes), strain improvement strategies can be better targeted.


             

£25,000 has been awarded to Dr Hoiczyk,  University of Sheffield, and GlycoMar, for their project ‘Use of Membrane complexes for the production of microalgal polysaccharides’. 

The utilisation of microalgae for production of high value chemicals has seen major advances in the last decade. A key limitation is the yield of target products, which can restrict their commercial viability. This is particularly the case with exopolysaccharides (EPS), which are produced by many microalgae and represent a large biochemically diverse resource. GlycoMar Ltd has developed pilot scale production of a microalgal EPS, which has been patented for use in healthcare and skin care. Although methods for the production of the EPS exist, increased yield would greatly improve its industrial potential. The EPS appears to be secreted through the decapore apparatus in the cell’s envelope although its precise role in synthesis, maturation, and secretion are currently unclear. The proposed project aims to isolate and purify the membrane pore complex with the goal to identify its protein components. Our working hypothesis is that the complex multi-layered decapore complex is more than a simple secretion portal and is crucial for the synthesis, maturation, and derivatisation of the exported polymer. Therefore, we expect that once the membrane protein components of the decapore are known, future work could address the deletion and/or overexpression of genes coding for these individual components to influence polymer production. This strategy should provide the basis for the identification of overproducing strains that would open up the route for larger-scale application of the identified EPS product.

The outcomes of the project have commercial potential, in terms of the application of the product, but also potentially as a platform technology utilising membrane pore complexes as production systems for microbial polysaccharides. This has the capacity to open the production and utilisation of a very wide range of polysaccharide products, which are currently limited by yield, culturing or handling issues.


  

£25,000 has been awarded to Dr Vincent Postis, Leeds Beckett University, and English Spirit Distillery, for their project ‘Bioenergy production from biorefineries waste using super yeasts’.

Due to the constant increase in energy prices, demand for cheap/renewable energy has escalated. The bioethanol sugarcane raffineries generates large amounts of wastes: bagasse (solid) and vinasse (liquid). For every litre of distilled ethanol, 10-15L of vinasse, are generated. While bagasse is used as carburent in electric generators, vinasse is disposed in agricultural fields or at sea leading to major environmental issues.

Vinasse main component is glycerol. Glycerol is also accumulated as a by-product in diverse types of biorefineries. Therefore such by products can be recycled at low costs for fermentation processes by yeast.

To reduce this environmental negative impact, this project therefore proposes to generate yeasts which will be able to transform this industrial waste into a green biofuel. Our aim is then to select/generate yeast as efficient ‘’cell factories’’ capable of converting glycerol-based products, such as vinasse, into large amounts of added-value products, namely free fatty-acids/neutral-lipids. Those can then be converted in biofuel of second generation or used for the anti-foam agents production.

Due to the accumulation of vinasse as a by-product in diverse types of biorefineries, this strategy would emerge as instrumental and cost-effective for the yeast- based fermentation industries. In addition,  it will also reduce the severe environmental impact of bioethanol sugarcane raffineries. In conclusion, yeast fermentation of vinasse (in this case) besides contributing to the recycling of waste, will also reduce the toxicity of this by-product.

Information Days on 2018-2020 Horizon 2020 Calls for Proposals

Information Days on 2018-2020 Horizon 2020 Calls for Proposals

The European Commission will organise a number of information days in Brussels on the upcoming 2018-2020 calls for proposals in the last Work Programme of Horizon 2020 (to be published in October). These events will provide information on the content of the calls and will often be combined with dedicated brokerage events to support prospective applicants with finding partners for projects. The following events are planned in the coming months

Furthermore, a series of national events is also planned by Innovate UK and the Enterprise Europe Network. A list of planned and confirmed events can be found on the Innovate Knowledge Transfer Network’s website.

Synthetic Biology Start-up company survey results

Synthetic Biology Start-up company survey results

A survey of synthetic biology company start-ups in the UK is published today by SynbiCITE, the UK’s national centre for the commercialisation of synthetic biology. The study reveals a vibrant ecosystem sustaining a thriving and rapidly growing sector of the bioeconomy.

Highlighting sources of innovation and entrepreneurship, and exploring R&D, technology transfer, investment and growth, the survey covers UK starts-ups between 2000 and 2016. A close look at 146 synthetic biology companies shows that the number of start-ups has doubled every five years during the survey period. Looking ahead, it seems likely that with the right support, the UK synthetic biology ecosystem will be able to model itself on the self-sustaining clusters found in the US in Silicon Valley, CA, and Cambridge, MA.

“Confirming the arrival of a new innovation ecosystem demands evidence: proof that variables ranging from investment, pipeline infrastructure, to talent and education are established and stable”, said Dr. Stephen Chambers, CEO, SynbiCITE. “We believe the industry has reached a critical mass of companies, showing a healthy churn of attrition and creation. Roughly 76% of all the start-ups founded in the survey period are still active and with the continuation of an effective national strategy in the future, this ecosystem will undoubtedly thrive, creating jobs and wealth while sustaining the UK’s leading role in the field.”

Professor Richard Kitney, Co-Director, SynbiCITE commented: “As you’d expect of an industrial sector at a relatively early stage, synthetic biology in the UK will continue to require public as well as private investment. This will be essential to translate today’s research into the exciting industrial products of the future that promise to make such a positive difference to our world in health, energy, materials and the environment.”

“Patience will be crucial,” added Professor Paul Freemont, Co-Director, SynbiCITE, “the UK government has shown great support for synthetic biology, investing £300m in between 2009-2016. We have no doubt this industry has a bright future, and look forward to expanding our work with world leaders in synthetic biology in the USA and Asia for example where so much exciting work is being done”.

Take a look at the survey UK Synthetic Biology Start-up Survey 2017

JRC Bioeconomy Knowledge Centre Launched

​The European Commission has launched a new Joint Research Centre (JRC) Bioeconomy Knowledge Centre (BKC). The BKC is the fourth Knowledge Centre to be launched by the JRC in recent years and aims to bring information and data from a wide variety of sources together in one place, in an open format. In doing so, the BKC aims to help provide a more coherent picture of knowledge on the bioeconomy across Europe, as well as identify gaps and bring information closer to the general public and policy makers. Following on from the work of the JRC Bioeconomy Observatory, it is hoped that the BKC will play a key role in the development of EU policies in the short, medium and long term.

« Older Entries Recent Entries »