Author Archives: Jen Vanderhoven

CBMNet and IBCarb awarded BBSRC International Workshop Award

CBMNet and IBCarb awarded BBSRC International Workshop Award

BBSRC has identified industrial biotechnology and bioenergy as high-level priority areas in its Delivery Plan for 2016-2020. Supporting the BBSRC to achieve its strategic goals, this focussed workshop will identify the science and technological barriers that need to be addressed in order to harness the potential of plant ‘cell factories’ for producing biopharmaceuticals. A CBMNet-driven symposium (Manchester, September 2017) brought together key players from Canada, the EU and the UK, to discuss scientific and commercial opportunities and challenges in this space. The goal now is to regroup, with a more focussed set of individuals, to refine the landscape and to identify opportunities for collaborative R&D projects involving academia and industry in the UK and Canada. These aims are synergistic with those of CBMNet and IBCarb in the UK, and with the Canadian Glycomics Network, GlycoNet.

Organisms produce glycosylated proteins for multiple purposes (e.g. stabilizing protein structure; interacting with receptors; self-recognition; etc.). There is a significant body of work on mammalian and yeast cells – both to understand the mechanisms of glycosylation and to manipulate it to synthesize desired glycoforms (including biopharmaceutical applications). Although plants are increasingly being used as a platform for commercial manufacturing of proteins, our knowledge of the glycosylation systems of plants is incomplete. For example, the secretory pathway (the location where glycosylation takes place) and consequences of manipulation thereof are poorly investigated. However, the understanding of basic mechanisms is of utmost importance, because it has a significant impact on the expression level (yield) and quality of a glycoprotein product.

An introductory workshop driven by CBMNet was attended by 22 participants from the UK, Canada and the EU. Expertise spanned cell membrane biology, cell membrane transporters, yeast and bacterial glycosylation, glycobiology, protein secretion, structure/function of a set of nucleotide sugar transporters, glycomics, plant biotechnology, and in vitro remodelling of glycans on therapeutic proteins, enabled a focus on sharing knowledge and gaining a deeper understanding of the native plant glycosylation machinery and the manipulation thereof for the production of proteins with optimized functions. The workshop identified the differences and common features in different species (i.e. mammalian, yeast, bacterial), as a basis to better understand and control protein glycosylation in plants. Identifying potential bottlenecks in the transport of a proteins through the secretory pathway was also considered.

The goal now, through a slimmed-down working group, is to define potential ways forward that will overcome yield- and quality-restricting bottlenecks in plant glycoprotein production processes. This will require the development fundamental understanding, coupled with the generation and deployment of tools to manipulate pathways and processes.

Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins

Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins


The apparent mislocalization or excretion of cytoplasmic proteins is a commonly observed phenomenon in both bacteria and eukaryotes. However, reports on the mechanistic basis and the cellular function of this so-called “nonclassical protein secretion” are limited. Here we report that protein overexpression in recombinant cells and antibiotic-induced translation stress in wild-type Escherichia coli cells both lead to excretion of cytoplasmic protein (ECP). Condition-specific metabolomic and proteomic analyses, combined with genetic knockouts, indicate a role for both the large mechanosensitive channel (MscL) and the alternative ribosome rescue factor A (ArfA) in ECP. Collectively, the findings indicate that MscL-dependent protein excretion is positively regulated in response to both osmotic stress and arfA-mediated translational stress.


Protein translocation is an essential feature of cellular organisms. Bacteria, like all single-cell organisms, interact with their environment by translocation of proteins across their cell membranes via dedicated secretion pathways. Proteins destined for secretion are directed toward the secretion pathways by the presence of specific signal peptides. This study demonstrates that under conditions of both osmotic stress and translation stress, E. coli cells undergo an excretion phenomenon whereby signal peptide-less proteins are translocated across both the inner and outer cell membranes into the extracellular environment. Confirming the presence of alternative translocation/excretion pathways and understanding their function and regulation are thus important for fundamental microbiology and biotechnology.

Read the full paper here.

€2.4M European ERA CoBioTech Project Success for CBMNet

€2.4M European ERA CoBioTech Project Success for CBMNet


We are proud to announce that a CBMNet led proposal to the First transnational Call for research projects within the framework of the ERA-NET Cofund on Biotechnologies (ERA CoBioTech) “Biotechnology for a Sustainable Bioeconomy”, has been successful.

Developed through CBMNet and led by CBMNet Management Board member Dr Alan Goddard, with CBMNet Co-Director Professor Gavin Thomas, as Co-investigator, ‘MEmbrane Modulation for BiopRocess enhANcEment’ (MEMBRANE), will deliver bespoke robust industrially-viable cell factory strains, engineered to overcome current bioprocess and production bottlenecks, accelerating the commercialisation of two significant industrial bioprocesses. Implementation of this project will significantly reduce production costs and environmental impact for two companies, increasing product sustainability.

“We are delighted with this EU funding, both as further recognition of CBMNet-led proposals bearing fruit, but also that the EU can recognise that there is much under-explored biology around the microbial cell membranes that could be exploited in industrial biotechnology and bioenergy” – Professor Gavin Thomas, CBMNet Co-Director, University of York

This 36-month project sees five leading research institutes (Aston University, University of York, Forschungszentrum Jülich, IATA-CSIC and Groningen) and two large industry partners (Lallemand and Pakmaya), across five countries, collaborate, and validate at pilot scale, engineered robust cell factories (yeast and Propionibacterium) that overcome existing toxicity challenges, improve efficiency and allow their effective commercialisation. The strategies developed within this project will be applicable across the sector to facilitate rational strain engineering with far-reaching benefits.

Our multinational multidisciplinary team are all CBMNet members and combines skills in lipidomics, proteomics, transcriptomics, biophysics, MD simulations, strain engineering, high throughput screening and commercial process and product development. The collaborative, integrated and iterative approach maximises impact; it would be impossible for any one partner to conduct this project alone and success is contingent upon the expertise of all partners.

“CBMNet was my first exposure to Industrial Biotechnology and I feel that I have had tremendous support from the network since its inception, both in terms of people I have met, networking events and conferences, and funding opportunities available.  The underpinning ideas for our successful ERA CoBioTech proposal emerged from a number of CBMNet-funded projects and fruitful conversations with both academics and industrial partners.  The consortium was built through CBMNet, utilising existing connections and also by leveraging the EU-wide reach of CBMNet to recruit relevant academic and industrial partners to work on a project of mutual interest.  CBMNet has been incredibly supportive throughout the process” –  Dr Alan Goddard, Aston University

The global economy has an unsustainable dependence on fossil raw material with demand for raw material inputs to industry growing steadily. Concerns about environmental sustainability are becoming more acute; thus, alternatives to traditional, fossil-fuel based chemical production are urgently required. Cell factories, which use microorganisms to produce materials from renewable biomass, are an attractive alternative, and an increasing number of platform chemicals are being produced at industrial scale using engineered microorganisms. These are expected to have a transformative impact in industrial biotechnology, but, first, we must meet the challenges of designing and optimizing high-yield cell factory strains that can produce commercially viable amounts of product. One reason for poor product output is that the production conditions are ultimately toxic to the producing cells. In addition to damage to intracellular components such as enzymes, the lipid cell membrane and associated proteins are vulnerable to biomolecules e.g. ethanol and propionate, as well as to physical parameters during production such as osmotic stress, pH, and temperature. An approach whereby membranes can be “tuned”, in terms of their lipid and protein content, to become more resistant to stresses brought about by toxicity would revolutionise the field. Additionally, expression of efficient membrane transporters to export ‘toxic’ products can mitigate intracellular damage. These approaches will ultimately enable production of higher concentrations of the desired molecules or cells making the bioprocesses more efficient, increasing product yield, reducing cost, and help to drive the move away from fossil-based raw materials. An adoption of such “green” processes and avoidance of depletion of non-renewable carbon sources will bring huge social and environmental benefits. Products and processes which  are currently economically unviable due to toxicity can be rendered profitable by even small increases in the resistance of strains and concomitant yield increases.

The project is divided into seven interconnected, iterative work packages (WPs) with a well-established build-test-analyse approach. Initial analysis of –omics data will identify key alterations in membrane protein and lipid content of both microbes subjected to stresses associated with bioproduction and those strains known to be somewhat resistant to such stresses (WP1). In vitro and in silico approaches will be used to rapidly delineate the roles of these alterations and rationally design more resistant membranes (WP2). Using synthetic biology and strain evolution approaches, we will alter the membrane composition of microbes to reflect the “optimal” membranes determined in WP2 (WP3). Optimal strains will be identified in a high throughput manner and subjected to large-scale testing to ensure that the changes made translate to the industrial setting (WP4). Following this, another iteration of the cycle will further optimise the strains. WP5 will evaluate the environmental and social sustainability of the innovative production processes and the final products. WP6 will develop and implement a strategy for the dissemination and exploitation of research results to different stakeholders. WP7 involves consortium management, project governance, communication activities and administrative oversight to ensure maximum impact of the project.

Project Partners:

Dr Alan Goddard, Aston University

Dr Gavin Thomas, University of York

Dr Amparo Querol, Consejo Superior de Investigaciones Científicas (CSIC) – Institute of  Agrochemistry and Food Technology

Dr Stephan Noack, Forschungszentrum Jülich

Prof Siewert-Jan Marrink. The University of Groningen

Dr Mustafa Turker, Pakmaya

Dr Jose Heras, Lallemand

CBMNet IN-FOCUS 2016-2017: Our Network’s Impact

CBMNet IN-FOCUS 2016-2017: Our Network’s Impact

**Download IN-FOCUS here.**

A welcome from Professor Jeff Green, CBMNet Director……

Welcome to the latest issue of IN-FOCUS. Since its launch in 2014 CBMNet has worked to build an international community of academics and industrial biotechnology practitioners to raise awareness of the importance of membrane function, and in particular the transport of substrates and products, in creating efficient bioprocesses. Our many events have brought together over 400 academics and industrialists to share knowledge and discuss a range of challenges where a better understanding of membrane function could provide innovative solutions. These meetings have cemented new relationships between academia and industry and the resulting collaborations, supported by our Proof-of-Concept and Business Interaction Voucher schemes, are now developing as longer-term partnerships and applications for further funding. At this point it is appropriate to thank our Network Manager Dr Jen Vanderhoven for her exceptional work in organising events, supporting developing collaborations and administering CBMNet finances.

“CBMNet has led the way in open, inclusive and interesting meetings that both inform of novel science and bring people together in useful teams. Their funding applications have been rigorously reviewed and their success in grant capture and stimulating new collaborations is excellent. Also their ability to encourage formation of new teams without even a hint of self-fulfilment in the leadership team – who seem to revel in the success of others as much as themselves – is exceptional. I think their outreach via websites, art installation and newsletters, including brokering partnerships via the network, is a great example of best-practice.” CBMNet Member, 2017

Working with the management board has been one of the many privileges of being a part of the CBMNet team. The high levels of knowledge, expertise and creativity embodied in the management board have contributed greatly to the success of CBMNet activities and ensured that our events attract leaders in the relevant fields. One of many highlights was the CBMNet Scientific Session entitled Membrane Transporters held during the 2016 Microbiology Society Annual Conference. This attracted world-leading experts in the full range of biological transport systems to share their knowledge and experience with industrial representatives and early career researchers (ECR). It has been a particular pleasure to have helped deliver several activities focused on ECRs. The CBMNet Vacation Scholarship Scheme has introduced undergraduate bioscientists to the world of IB and our bespoke nationwide IB careers event was full of energy and enthusiasm, as was our ECR Research symposium and our CBMNet Shortcourse in IBBE held at CPI and Fujifilm Diosynth Biotechologies on Teeside. The generosity of our industry partners in sharing their IB insights and opening their work places to offer fascinating insights into operating commercial IB plant was greatly appreciated by all attendees. In its present incarnation CBMNet has another 18 months to run so I would encourage you to keep an eye on our website for up-coming events and register early to avoid disappointment. As well as our event schedule we are actively helping members form consortia and co-ordinating grant applications.

“My experience with CBMNet has been one of the finest and most fruitful examples of   academic-industry exchange, networking and developing collaborative projects that I have experienced. This is all the more remarkable, because I have experienced  plenty of such events in other academic‑industry partnership involvement.” CBMNet Member, 2017

Let’s draw blue skies research out of our universities and into the economy

Let’s draw blue skies research out of our universities and into the economy

A great idea often starts with a lightbulb moment, a flash of inspiration that feels like it could be something big – but for many ideas that’s as far as it gets. For successful innovators, getting to the point where things really take off is a long and often winding road of hope, promise, disappointment and renewal.

Entrepreneurs who grow a good idea into a business are critical to our economic success, but entrepreneurs are not only born and raised in the business community. There are about 1,000 businesses in the UK that are run by university academics who have taken the plunge and are commercialising the research that they have invested years of their lives in.

These include companies such as 2D tech, which was spun out of Manchester University to find commercial applications for graphene, Run3D, an Oxford University spinout that uses biomechanical engineering to help sportspeople improve their performance, or Magnomatics from Sheffield University, which has developed a gearbox that doesn’t actually have any gears in it.

If we are to maintain our position as a world leader in innovation, the UK needs these research-led businesses to scale up, not sell up. As universities minister Jo Johnson recognised recently in a speech to the Higher Education Funding Council for England, our universities need to “find a new gear” and accelerate the adoption of the best practice on research commercialisation that already exists in some of our universities so that it becomes mainstream.

This view is backed up by statistics. Although patent applications in the UK have increased by around 150% over the last decade, most of that growth was in the first five years. While the number of businesses that are being spun out of our universities has been growing, the figures for those that are still operating after three years has been stagnant since 2009-10 and, on average, they have just four employees.

Poor commercialisation of UK research is a problem that Johnson has committed to solve through his new knowledge exchange framework. It will benchmark performance in university-business collaboration, with the aim of driving up standards and recognising that the strengths of different types of institution are not based solely on their work in research.

This should be welcomed, particularly by growing businesses that are faced with a wide choice of universities and which can struggle to identify the best partner. However, we need to make sure the framework takes a long-term view of investment and uses a measure of knowledge exchange that genuinely drives businesses to scale up and creates economic growth.

At the moment some university technology transfer offices are using funding models and measures of success that are just too short-term. We should not use a single measure, like the exploitation of intellectual property, simply because it is easier to quantify. Innovate UK will work with the government and Research England to make sure that the new framework looks to the long term, with a variety of measures that genuinely link through to growth and create the right incentives.

In particular, the framework must acknowledge that research that can transform our industries comes in many different forms, not just patents and IP. For instance, a great deal of work is already being done to develop artificial intelligence systems and algorithms that will analyse big datasets, but since you cannot patent an algorithm in the UK, using that as your indicator would be a flawed measure.

The framework will also need to drive knowledge from our universities into established businesses of all sizes to develop new products and services because this is just as important as support for new companies that are starting out.

That is where schemes like knowledge transfer partnerships can help. Run by Innovate UK, the research councils and devolved administrations, these transfer a graduate or more senior researcher into a business for between 12 and 36 months to deliver an innovation project identified by the business. This is a three-way partnership between the business, the university and the academic in which all benefit.

This week we received an additional £30 million from the national productivity investment fund to substantially expand the programme. When the framework is introduced, universities will be able to use schemes like these partnerships to demonstrate how they are commercialising research.

Knowledge transfer from our universities and the commercialisation of university research matters. So long as we get the measures and incentives right, the framework can bring benefits not just to the international reputation of our businesses and universities, but also to the wider economy.

Read the full article at

SPOTLIGHT ON INDUSTRY: Dr Tithira Wimalasena, Senior Fermentation Scientist, Calysta


Dr Tithira Wimalasena, Senior Fermentation Scientist, Calysta

What is your background and current job role?

After graduating with a BSc in Microbiology, I obtained a Masters in Applied Molecular Microbiology from University of Nottingham. Following this I completed a PhD at the same university, understanding the unfolded protein response of Candida albicans which was related to Medical Microbiology.  On completing my PhD, I joined University of Nottingham as a Research Fellow on a brewing project developing novel molecular tools to beverage industry. During this project, I had lot of exposure to applying grants, developing patents and understanding the insights of developing a spin out company. Followed by then I joined a project looking at producing bioethanol using lignocellulosic materials. My role was to develop super tolerant Saccharomyces strains to ferment bioethanol effectively. I also led projects related to strain optimisation i.e., de-constituting and understanding the mode of action of pre-treatment associated inhibitors and toxic end products on the biocatalyst, modified it by using classical mutagenesis tools and screening them using high throughput methods to identify super tolerant yeast strains and their behavior in the fermentation and scaling up process.

I left University to join Dupont to work in the pilot plant as a Fermentation Scientist. This project was managed by Butamax (Joint venture of BP and Dupont) producing isobutanol. During this project, I led fermentation lab managing trouble shooting activities of the pilot plant experiments and focused on process development and scale up studies collaborated with global fermentation team in Dupont USA.

I joined Calysta in 2016 as a Senior Scientist.  My role at Calysta was to manage fermentation activities in the pilot plant based at Teesside UK. This has given me a fantastic opportunity to understand the novel gas fermentation technology.

Currently I am managing all the fermentation activities at Calysta UK. This includes the activities in the Market introduction facilities (pilot plant) as well as managing the small-scale fermentation activities in the lab. One interesting aspect of my job is that I get to work with cross disciplines in the company; one day I work with process technicians to improve the productivity and next day I may be working with process development engineers responsible for up scaling the technology focusing closely on fermentation risk mitigation. Outside my core role, I work with process modelers focusing on statistical data analysis using the data generated from the pilot plant, or quality assurance and business development team in Calysta headquarters based at Menlo Park California, providing technical input and guidance to support to enhance the quality of the final product.

What Industrial Biotechnology and Bioenergy related project is currently being undertaken by your organisation?

We are in the process of developing fully fledged gas fermentation lab which will be linked to state of the art microbiology and analytical facilities. We will be looking at process development experiments related to gas fermentation. Our interests will mainly be focused on process development, fermentation, microbiology and related analytical techniques.

What do you think the challenges related to this project are in the next 1-5 years?

Calysta Ltd is an Industrial Biotechnology company founded in 2012, a global company creating innovative industrial bio products from sustainable sources. Recently it has been nominated as the “3rd Hottest Emerging Companies in the Advanced Bioeconomy” rankings by Biofuel Digest magazine in 2017.

Calysta develops and produces high quality protein for commercial aquaculture and livestock feed. Calysta has established its first Market Introduction Facility (D-loop Pilot scale fermentation facilities) in UK for FeedKind® protein, a new sustainable fish feed ingredient to reduce the aquaculture industry’s use of fishmeal. The facility opened in September 2016 and is located at Wilton centre at Teesside, in northeast England. Calysta has also announced a partnership with Cargill for production of FeedKind Aqua protein in North America and marketing worldwide.

One of the challengers Calysta may face will be scaling up sustainable animal feed innovation to meet the world demand for animal protein production. In addition, there will be increased demand for the protein such as increased amino acid composition, improved digestibility, and animal performance and health. Future research challenges include modified downstream processing to produce value-added products, and improved understanding of factors contributing to nutrient availability and animal health performance.

How can other CBMNet members help you and your organisation with your research?

We are constantly seeking better ways to conduct our R&D and networking across partners with aligned interests from both academia and industry and as a part of it we have already established close collaborations with some CBM members such as University of Nottingham. With the new R&D facilities on the horizon we will be looking to work on more development projects related to gas fermentation, microbiology and analytical chemistry which are always open for collaboration.

‘Evaluation of UK Involvement with the Research Framework Programme and other European Research and Innovation Programmes’.

The Department of Business, Energy and Industrial Strategy (BEIS) has published a report entitled Evaluation of UK Involvement with the Research Framework Programme and other European Research and Innovation Programmes’. The final report, which was originally commissioned by BEIS in 2015, mainly looks at the UK’s involvement in FP7, but also includes some very early conclusions for participation in Horizon 2020 (using data until February 2016). Furthermore, it includes the results of a survey, case studies on FP7 administration and feedback, which UKRO, together with and a number of subscribers, provided in late 2015.

The report concludes that the UK had a dominant presence in FP7, which was reflected in the country’s success rates, participation in proposals and the requested funding rates. It states that ‘The UK performed above expectation relative to its GDP, GERD, GOVERD and its number of FTE researchers – when comparing the proportion of FP7 funding received to the proportion of EU GDP, GERD, GOVERD and FTE researchers.’

In FP7, UK participants took a coordinating role on projects more often than any other country, with UK organisations coordinating 49% of projects with UK participants, compared to 35% for Germany and 37% for France. The report also acknowledges the outstanding success of the UK in the People (now MSCA) and Ideas (ERC in FP7) programmes, with slightly lower participation in the Cooperation programme. UK participation overall was strong for higher education institutions compared to other countries, but lower for industry.

Based on the survey, the report also concludes that FP7 represented a significant funding source for the UK research community and acknowledges that the vast majority of the activities funded would not have been possible without FP7.

The report also mentions the UK’s EU referendum and states the following: ‘The research was commissioned before the UK referendum on 23 June 2016. In this referendum, the UK voted to leave the European Union. The Government has made clear it would welcome agreement to continue to collaborate with European partners on major science, research and technology initiatives. As set out in the future partnership paper,Collaboration on Science and Innovation, published on 6 September 2017, the UK will seek an ambitious Science and Innovation Agreement with the EU.’

Industrial Biotechnology report launched in Sheffield

Industrial Biotechnology report launched in Sheffield

31 October 2017

A new analysis of the current state and future direction of UK Industrial Biotechnology (IB) was launched at the University of Sheffield. The report, Developing a Strategy for Industrial Biotechnology and Bioenergy in the UK, sets out a series of recommendations designed to make the UK a world leader in IB and create a more sustainable and prosperous economy.

IB is the use of biological resources to manufacture materials, chemicals and energy.  Commitments to reducing greenhouse gas emissions and the need to move towards a greener chemicals industry that is less dependent on fossil fuels are just two of the major challenges that IB can help resolve.  At present IB companies employ 14,000 people in the UK, contributing £1.2bn in Gross Value Added to the economy, but it is estimated that the value of the global IB market could reach £360bn by 2025.  To have a sustainable future the UK must take its place amongst the world’s leaders in this growing sector of the economy. 


The IB Landscape report was commissioned by four Networks in Industrial Biotechnology and Bioenergy (NIBB) and completed by economics consultants RSM.  The report assesses the importance of IB for the UK economy, provides a critical analysis of IB in the UK relative to competitor countries and identifies the opportunities and threats to the sector to produce evidence-based recommendations designed to strengthen the UK’s IB position. A major recommendation is the need for a credible long-term sector deal to support IB as part of the Industrial Strategy policy. 

Professor Jeff Green, Director of CBMNet, urged policy makers to take action, “To keep pace with international competitors, the government needs to make clear its long-term commitment to industrial biotechnology.  An encouraging signal would be to bring back the Industrial Biotechnology Catalyst fund that invested in translating the knowledge generated by the UK’s academic research base and SMEs into new IB processes.  But rather worryingly, IB was not prominent in the recent Industrial Strategy Green Paper with no acknowledgment of what it is, what it does, or what its future contribution to the UK economy and society might be.”

At the launch, representatives from multinationals (Akzo Nobel, BASF, GSK, AstroZeneca and Unilever), SMEs, academics from 15 universities and civil servants from BEIS met to consider the report’s findings and formulate the actions needed to ensure a bright future for UK IB.  Recognizing the constraints imposed by feedstock availability, a focus on high-value products and a regional approach to modular manufacturing were amongst the recommendations discussed as a stepping stones towards a future sustainable circular economy based on IB. 

Professor Dave Petley, Vice President (Research and Innovation) at the University of Sheffield underlined the role he believes the academic community has to play in the IB sector: “The University of Sheffield has a strong history of and commitment to collaboration. We have many examples of successful collaboration with industry partners such as Unilever, AstraZeneca, GlaxoSmithKline and Siemens, as well as many UK and overseas government agencies and charitable foundations.

“This event has brought together key players in IB who, like the University of Sheffield, are committed to using the Industrial Biotechnology Landscape report to influence policy and future funding allocations relating to bioscience and biotechnology.  Through this commitment to collaborate we will deliver impact, through influencing policy, and making the UK’s Bioeconomy one that plays a significant role in the UK’s economic success.”

Report recommendations:

**You can read the full Industrial Biotechnology (IB) Landscape Report: UK Industrial Biotechnology Framework and Strategy Report here.**

For more information about the “Industrial Biotechnology Landscape Report: UK Industrial Biotechnology Framework and Strategy” report, please contact CBMNet Manager, Dr Jen Vanderhoven (

BBRSC Networks in Industrial Biotechnology and Bioenergy

The Biotechnology and Biological Sciences Research Council (BBSRC) has funded 13 unique collaborative Networks in Industrial Biotechnology and Bioenergy (BBSRC NIBB) to boost interaction between the academic research base and industry, promoting the translation of research into benefits for the UK. The networks pool skills from academia and business to develop research projects with the potential to overcome major challenges in the industrial biotechnology and bioenergy arena. They also allow new members to come on board with skills that can benefit the group.

The four NIBB who commissioned the report were CBMNet (Lead NIBB), BIOCATNET, P2P, C1Net.


A network to engineer the cell-environment interface to improve process efficiency, the ‘Crossing biological membranes’ Network is led by Professor Jeff Green, University of Sheffield and Professor Gavin Thomas, University of York. Our primary focus is to understand the mechanisms by which substances are transported into, within, and out of microbial cell factories, with the goal of developing enabling technologies that are crucial for the future of almost all cell-based industrial biotechnology applications. We are a vibrant community of over 1250 academics and industrialists, working together to develop environmentally sustainable, economically viable bioprocesses, for the production of bio-based molecules required by society for everyday life.


BIOCATNET is the BBSRC NIBB dedicated to discovery, development and scalable production of biocatalysts for the whole Industrial Biotechnology community. We provide a cross-sector forum with the goals to foster and enhance collaboration; develop skills and expertise; share best practice; define common research priorities; and target funding opportunities in industrial biocatalysis. By bringing together key research expertise from the academic and industrial sectors, along with manufacturers and end-users, BIOCATNET will address key challenges to help shape the future of Industrial Biotechnology in the UK and beyond.


A Network of Integrated Technologies: Plants to Products (P2P) is led by Professor David Leak, University of Bath and Dr Joe Gallagher, Institute of Biological, Environmental and Rural Sciences (IBERS). P2P is one of the thirteen BBSRC supported Networks in Industrial Biotechnology and Bioenergy (NIBB) and one of two supported by the EPSRC. Our primary focus is integration – of people, technology and expertise – to deliver integrated processes for efficient and economic conversion of plant biomass to products. We are committed to supporting and growing the industrial biotechnology community and maximising the value it delivers.


C1net champions research into the use of “gas-eating” microbes to ferment polluting greenhouse gases (carbon dioxide, carbon monoxide and methane) from landfill and industry, into useful products e.g. biofuels and plastics. There has been a global surge of interest in studying the biology of organisms able to grow on C1 gases and commercially exploit them as platforms for chemical manufacture. The UK, however, lags disappointingly behind the curve. C1net aims to correct this deficiency by creating a vibrant community of UK scientists using a programme of measures to increase public understanding, recruit and train young scientists and encourage interaction between science and industry.  The aim is to unravel the biological, chemical and process engineering aspects of gas fermentation and steer the translational outputs towards commercial application.


SPOTLIGHT ON INDUSTRY: daniela heeg, CHAIN Biotechnology Ltd


Daniela Heeg, Technical Product Manager, CHAIN Biotechnology Ltd

What is your background and current job role?

I obtained a PhD in Molecular Medical Microbiology from the University of Nottingham, where I undertook a project concerned with the spore formation and spore germination of the important human pathogen Clostridium difficile. Following this, I worked at the University of Nottingham as Postdoctoral researcher and in clinical diagnostics at a private company before joining CHAIN Biotechnology Ltd as Technical Product Manager. Here, I am responsible for the development and dissemination of our product range, including commercial tools such as the modular pMTL80000 vector series and the first therapeutic products in our pipeline.

What Industrial Biotechnology and Bioenergy (IBBE) related project is currently being undertaken by your organisation?

Currently, we are using Clostridium spp. as chassis to secrete therapeutic substances for the treatment of inflammatory and infectious bowel diseases. We have produced our first genetically modified strain secreting therapeutic, CHN-1, in volumes to support early in vitro pre-clinical work. We are now investigating in scale-up of this and other strains to improve growth. We are also researching an inducible version of spore production.

What do you think the challenges related to this project are in the next 1-5 years?

As CHAIN identify novel therapeutic targets, methods of secretion for novel peptides in Clostridium will need to be developed. We currently have a collaboration with the University of Nottingham in this area. In addition, because we are using the spores of our strain in formulation, we cannot induce spore formation with any substance that would prevent us from using the resulting spores in human clinical trials and subsequently in medicine. Thus, we cannot induce using common systems such as antibiotic inducible system. We also have the need for a truly tight system, so any system that can be triggered by external natural substances is not ideal for our purpose.

How can other CBMNet members help you and your organisation with your research?

Other CBMNet members could help us with our research by suggesting and maybe testing systems in the scope of an interaction voucher or more substantial funding. Such projects could focus on identification or secretion of peptides from bacteria or induction of sporulation that would be acceptable for deliberate release of an organism.

« Older Entries