Author Archives: CBMNet

The artificial cell: biology-inspired compartmentalization of chemical function

Royal Society Publishing has recently published a special issue of Interface Focus entitled “The artificial cell: biology-inspired compartmentalization of chemical function”, organised by Paul A Beales, Barbara Ciani and Stephen Mann.

This issue is based on a Royal Society Theo Murphy meeting held on the 26–27 February 2018. The articles reveal the rich diversity of research currently being undertaken in the field of artificial cell design and construction, and highlight the challenges that lie ahead.

The articles are FREE TO ACCESS here.

Read more

CBMNet scientists identify key step in production of Body Odour

University of York

CBMNet-funded scientists from the Universities of York and Oxford, along with industrial partner Unilever, have unravelled a key part of the molecular process by which armpit bacteria produce the most pungent component of the noxious smell we recognise as BO. The findings could result in more effective deodorants with targeted active ingredients, the researchers suggest. Read more

CBMNet and IBCarb awarded BBSRC International Workshop Award

BBSRC has identified industrial biotechnology and bioenergy as high-level priority areas in its Delivery Plan for 2016-2020. Supporting the BBSRC to achieve its strategic goals, this focused workshop will identify the science and technological barriers that need to be addressed in order to harness the potential of plant ‘cell factories’ for producing biopharmaceuticals. A CBMNet-driven symposium (Manchester, September 2017) brought together key players from Canada, the EU and the UK, to discuss scientific and commercial opportunities and challenges in this space. The goal now is to regroup, with a more focused set of individuals, to refine the landscape and to identify opportunities for collaborative R&D projects involving academia and industry in the UK and Canada. These aims are synergistic with those of CBMNet and IBCarb in the UK, and with the Canadian Glycomics Network, GlycoNet. Read more

Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins

Translation Stress Positively Regulates MscL-Dependent Excretion of Cytoplasmic Proteins

ABSTRACT

The apparent mislocalization or excretion of cytoplasmic proteins is a commonly observed phenomenon in both bacteria and eukaryotes. However, reports on the mechanistic basis and the cellular function of this so-called “nonclassical protein secretion” are limited. Here we report that protein overexpression in recombinant cells and antibiotic-induced translation stress in wild-type Escherichia coli cells both lead to excretion of cytoplasmic protein (ECP). Condition-specific metabolomic and proteomic analyses, combined with genetic knockouts, indicate a role for both the large mechanosensitive channel (MscL) and the alternative ribosome rescue factor A (ArfA) in ECP. Collectively, the findings indicate that MscL-dependent protein excretion is positively regulated in response to both osmotic stress and arfA-mediated translational stress.

IMPORTANCE

Protein translocation is an essential feature of cellular organisms. Bacteria, like all single-cell organisms, interact with their environment by translocation of proteins across their cell membranes via dedicated secretion pathways. Proteins destined for secretion are directed toward the secretion pathways by the presence of specific signal peptides. This study demonstrates that under conditions of both osmotic stress and translation stress, E. coli cells undergo an excretion phenomenon whereby signal peptide-less proteins are translocated across both the inner and outer cell membranes into the extracellular environment. Confirming the presence of alternative translocation/excretion pathways and understanding their function and regulation are thus important for fundamental microbiology and biotechnology.

Read the full paper here.

« Older Entries